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Abstract − A measurement system using strain gauges for 

structural health monitoring (SHM) was built up. The 

measurement uncertainty and sensor fault models were 

studied under a cyclic loading condition emulating the ocean 

waves. A methodology for sensor fault diagnosis and 

classification using the Convolutional Neural Network 

(CNN) deep learning with the images converted from time 

domain measurement data as the input was investigated. 

Keywords: Measurement uncertainty, sensor fault diagnosis, 
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1.  INTRODUCTION 

Structural health monitoring (SHM) has been utilized for 

the integrity assessment of marine and offshore structures. 

Different sensors such as strain gauges and accelerometers are 

deployed in the SHM system. These sensors operate in harsh 

marine and offshore environments and are exposed to extreme 

waves and winds from time to time. The accuracy and fidelity 

of the measurement data collected from these sensors is a 

fundamental and critical issue. Most of these sensors are 

embedded in the structures, which means the classical 

metrology methodology for sensor fault diagnosis and 

classification, as well as sensor calibration by shutting down 

the structure operation or dismantling the structure is not 

preferrable. 

In recent years, data-driven algorithms for sensor fault 

diagnosis and classification have been explored, which 

include principal component analysis [1,2], artificial neural 

networks (ANN) and machine learning [3,4], support vector 

machine (SVM) classification [5], Bayesian network analysis 

[6], as well as statistical correlation & generalized likelihood 

ratio (GLR) [7]. However, these algorithms did not address 

the accuracy, uncertainty and traceability of the measurement 

data used in the training process of the models, which made it 

difficult to justify the fidelity of the data analysis results as 

required by the relevant standards and guidelines [8]. 

In this paper, a laboratory scale measurement system 

using strain gauges for structural health monitoring was built 

up. Experiments were carried out under a cyclic loading 

condition emulating the ocean waves. The strain gauge 

measurement data were cross validated with the virtual 

measurement data using the Finite Element Analysis (FEA). 

The measurement uncertainties and sensor fault models were 

studied. A methodology for sensor fault diagnosis and 

classification using the Convolutional Neural Network 

(CNN) deep learning with the images converted from time 

domain measurement data as input was investigated.  

2.  STRAIN MEASUREMENT AND SENSOR FAULT 

2.1. Strain Measurement  

Welded plate joints are the primary structural components 

in marine and offshore infrastructures. Aligning with the 

engineering integrity assessment protocols, a laboratory scale 

measurement system using strain gauges was built up for 

structural health monitoring of the welded plate joint 

specimen, which was fabricated utilizing the high strength 

steel S550. The thickness of the main plate is 40 mm with a 

width of 40 mm.  The total height of the specimen is 440 mm, 

with the thickness of the vertical attachment equal to 20 mm. 

The specimen was tested at a Instron model 1334 general 

material testing machine under three-point bending, with the 

main plate simply supported at the ends, as shown in Fig. 1. 

The supported span of the welded plate joint is 300 mm. There 

were 22 FLAB-1-11-3LJCT strain gauges mounted close to 

the weld toe along the width of the plate, as marked in Fig. 1. 

The strain gauges were connected to a unit consisting of the 

Model 701957 Bridge Heads (DSUB-120 Ω, Shunt CAL, 

Enhanced Shield) before the measurement data were acquired 

by a DL850 oscilloscope. 

 

Fig.1 The testing specimen mounted with strain gauges 
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Ocean waves are caused by energy passing through the 

water, causing the water to move in a cyclic motion. The 

regular ocean waves are dominated by the water cyclic 

motion in a frequency range of 0.0001 Hz~20 Hz [9]. Hence 

a 5 Hz cyclic loading frequency emulating the ocean waves 

was applied in the tests of the specimen mounted with the 

strain gauges. The amplitudes of the cyclic loading force used 

in the tests were varied from 3 kN to 50 kN. The strain 

measurements were performed on 5 specimens.  

A finite element (FE) model of the welded plate joint 

specimen was developed.  Simulations of the specimen under 

the physical test conditions were conducted, as displayed in 

Fig. 2. Virtual strain gauge sensors were defined in the FE 

model, corresponding to the physical strain gauges mounted 

at the specimen. The virtual strain measurement results 

extracted from the FE simulation and strain measurement 

results by the physical tests were cross validated.  

 

 

Fig.2 FE simulation of the strain distribution in the specimen 

2.2. Measurement Uncertainty and Sensor Faults 

The extended uncertainties of the strain measurement data 

using healthy strain gauges under the emulated ocean waves 

loading conditions were evaluated as 5%, at the confidence 

level 95%.  

Strain gauge faults were observed in strain measurement 

of the specimen. The faults of the strain gauge sensor could 

be classified into three categories: sensor bias, sensor 

complete failure, and sensor gain. The time domain 

measurement data of the healthy sensors and fault sensors 

could be mathematically modelled respectively, as follows,  

 

a) Healthy sensor 

 

𝑥(𝑡) = 𝑥(𝑡) + µ 
where �̂�(𝑡)  is the measurement data, x(t) is the expected 

measurement datal, and µ is the measurement uncertainty. 

 
b) Sensor bias 

 

𝑥(𝑡) = 𝑥(𝑡) + 𝑎 + µ 

where a ≠0, is the measurement bias. 

 
c) Sensor complete failure  

 

𝑥(𝑡) = 𝑏 + 𝑤 
where b is a constant, and w is a white noise 

 

d) Sensor gain 

 

𝑥(𝑡) = 𝑐 ∙ 𝑥(𝑡) + µ 
where c ≠1, is the measurement gain. 

 

The normalized measurement data of the healthy sensors 

and fault sensors respectively are depicted in Fig.3. 

 

 

a) 

 

b) 

 

c) 

 

d) 

Fig.3 Measurement data of healthy sensors and fault sensors  



 

 

3.  THE CNN METHODOLOGY 

3.1. The CNN Methodology 

A data-driven sensor fault diagnosis methodology using 

Convolutional Neural Network (CNN) is proposed. The 

proposed methodology is capable of extracting features 

autonomously from the measurement data to perform the 

sensor fault diagnosis and classification, using the 2-D images 

converted from the time domain measurement data as the 

input to the CNN model. 

Convolutional Neural Network (CNN) is a Deep Learning 

algorithm for dataset processing and classification [10].  

Specifically, the 2-D CNN is an algorithm widely used in 

images pattern recognition. The proposed architecture of the 

CNN model is illustrated in Fig. 4. It consists of two 

convolutional layers, two pooling layers, a dropout layer, 

followed by a fully connected layer and a SoftMax layer, and 

finally, a classification layer for the output. Multiple 

functional transformations are used for each layer to extract a 

variety of features. The classification layer has the number of 

outputs corresponding to the classes of sensor health and fault 

conditions. The prediction of the classification layer is made 

on the output probabilities of the SoftMax layer.  

 

 

Fig.4 The architecture of the CNN model for sensor fault diagnosis 

and classification 

The convolutional and pooling layers capture the 

representative features from the images converted from the 

time domain measurement data for autonomous feature 

extraction. The CNN model’s parameters are learned by the 

supervised training algorithm. The adaptive moment 

estimation (Adam) stochastic optimization algorithm is 

applied to update network’s parameters during the training 

process. Comparing with the similar algorithms, the Adam 

algorithm is faster in optimizing the learning rate for the CNN 

parameters, by computing the adaptive learning rates for each 

parameter of the CNN model using the gradient decay factor 

and the squared gradient decay factor. After investigating the 

effectiveness of different configurations and tuning 

parameters on the classification performance, the architecture 

of the CNN model is finalized. 

3.2. The Data Pre-Processing 

A significant amount of measurement data are required in 

training of the CNN models for the sensor fault diagnosis. In 

this section, the measurement data of the strain gauge 

acquired in the physical tests of the specimens, supplemented 

with the virtual measurement data extracted from the 

numerical simulations were used. The time domain 

measurement data were pre-processed by synchronization and 

standardized normalization. Each time domain data segment 

consists of 1200 sampling points. Since the measurement data 

are collected under an emulated ocean wave condition at a 

single frequency, the sophisticated data pre-processing in 

time-frequency diagram or histograms is not necessary. Each 

data segment was directly converted into 40×30 image and 

categorically labelled before it was used as the input for the 

CNN model, as displayed in Fig. 5. 

 

  

a) 
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c) 

    

d) 

Fig.5 The converted image of the sensor data 



 

 

4.  RESULTS AND DISCUSSION 

The Convolutional Neural Network (CNN) is a supervised 

Deep Learning algorithm. The mature CNN model typically 

involves three phases: training, validating, and testing.  

The pre-processed measurement data were proportionally 

divided into the training dataset, validating dataset, and 

testing dataset. The training dataset was used for training the 

proposed CNN model. The validating dataset was used for 

assessing the performance of the CNN model in the training 

process. The training and validating of the CNN model for the 

strain gauge sensor fault diagnosis were implemented. Fig. 6 

displays the progress of the classification accuracy of the 

CNN model during the training and validating phases. It is 

found that the final classification accuracy of the CNN model 

for the training dataset and validating dataset is above 99%.  

 

 

Fig.6 The changing trend of the accuracy in CNN training  

The testing dataset was used to test the predication 

accuracy of the CNN model after the training phase and 

validating phase were completed. The testing dataset was 

input into the CNN model to obtain the prediction class and it 

was compared with the true class of the sensor status. The 

confusion chart of sensor fault classification using the trained 

CNN model is listed in Table 1, where the classes from 1 to 4 

represent the healthy sensor, sensor bias, sensor complete 

failure and sensor gain respectively. The CNN model 

demonstrates excellent accuracy and robustness in sensor 

fault diagnosis and classification. The prediction accuracy of 

96% for the sensor bias (class 2), 100% for sensor complete 

failure (class 3), and 96% for sensor gain (class 4) are 

achieved respectively. The prediction accuracy for healthy 

sensors (class 1) was calculated as 96%. 

 
Table 1 The confusion chart for sensor fault classification using 

the trained CNN model 

 

5.  CONCLUSIONS 

The measurements uncertainty and sensor fault models 

were studied, with a laboratory scale measurement system 

using strain gauges for structural health monitoring under an 

emulated ocean wave loading condition.  

A data-driven sensor fault diagnosis methodology using 

Convolutional Neural Network (CNN) deep learning is 

proposed. The proposed methodology is capable of extracting 

features autonomously from the measurement data to perform 

the sensor fault diagnosis and classification, using the 2-D 

images converted from the time domain measurement data as 

the input to the CNN model. The CNN model demonstrates 

excellent accuracy and robustness in diagnosis and 

classification of sensor faults.  

Future work will focus on investigating the applicability 

limits of the CNN methodology for sensor fault diagnosis and 

classification for structural health monitoring under the 

marine and offshore multi-frequency dynamic loading 

conditions, including sensor drift over the long term. 
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