
IMEKO TC6 International Conference on Metrology and Digital Transformation
September 19 – September 21, 2022, Berlin, Germany

THE UNCERTAIN NUMBER: A DATA MODEL FOR MEASUREMENT
Blair D Hall a,†,*

aMeasurement Standards Laboratory of New Zealand
†ORCID: 0000-0002-4249-6863

*Email: blair.hall@measurement.govt.nz

Abstract – A simple model for data obtained by measure-
ment is described. The data model satisfies requirements
for evaluation and reporting of measurement uncertainty
given in the Guide to the expression of uncertainty in mea-
surement (GUM). The model supports what is called in-
ternally consistent and transferable calculations, which are
qualities favoured by the GUM. In this way, more rigorous
GUM-compliant digital data processing can be supported
than the common reporting format of a single value for
measurement uncertainty presently allows.
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1. INTRODUCTION
The Guide to the expression of uncertainty in measure-

ment (GUM) is recognised by the metrology community as
describing a preferred approach to measurement data pro-
cessing [1]. When data is obtained by measurement, the
quantity intended to be measured (measurand) cannot be
determined exactly. However, methods described in the
GUM can be used to evaluate certain characteristics associ-
ated with a measurement, enabling an assessment of accu-
racy to be made: usually a statement can be made about the
uncertainty in a measurement result as an estimate of the
measurand.

The GUM was first published in 1993 and was not writ-
ten with digital systems in mind. It describes the evalua-
tion of measurement uncertainty in general mathematical
terms. In metrology, measurement is a sequential process,
in which laboratories cooperate to provide an infrastruc-
ture for traceability. National metrology institutes realise
SI units and calibrate reference standards for the next tier
of calibration laboratories. These laboratories, in turn, dis-
seminate calibration information to their customers. The
process goes on until an end-user completes the measure-
ment. At the final stage, information is used to make an
inference about a measurand that will inform a decision of
some kind. The collaborative measurement process imple-
ments a metrological traceability chain to support decision-
making by providing objective trustworthy information.

Each stage along a traceability chain must be appropri-
ately documented. A lot of information is retained inter-
nally and only a very brief summary is reported between
laboratories. However, independent control of laboratory
quality systems and staff competencies ensures that ade-

quate records are collected and retained and that the data
reported is technically sound. The data that is shared is in-
tended for skilled human interpretation and is in unspecified
formats. However, the widespread digitalisation of metro-
logical activities, which is intended to allow digital systems
to act reliably on data without human intervention, requires
a greater level of formal specification.

In this work, a data model suitable for exchange of in-
formation along a traceability chain is presented.1 A data
model is an abstract representation of key relationships be-
tween real-world entities and concepts. At a conceptual
level, data models may specify the kinds of statement are
meaningful in the problem domain. At a logical level, they
can describe the semantics of classes and data structures
used in representations; this helps to develop concrete im-
plementations.

2. GUM MEASUREMENT MODELLING
The heart of the GUM approach to data processing is a

mathematical description of a measurement, called a mea-
surement function or measurement model. In fairly general
terms, a model can be expressed as

Y = f(X1, X2, · · · , Xl) , (1)

where Y is the measurand and the inputs X1, X2, · · · , Xl

are external factors that influence the outcome of a mea-
surement.2 The measurement model may be considered as
a recipe for evaluating the measurand. If values for all the
inputs, X1, X2, · · · , Xl, were exactly known, then the ac-
tual value of Y would be evaluated by f(·).

In the notation adopted here, capital letters designate
quantities. Exact quantity values are never available, so ap-
proximations (estimates) must be used. Lower case letters
(e.g., x1, x2, · · · , xl and y) represent values that approxi-
mate the corresponding quantities. So, for example, a mea-
surement estimates a measurand, Y , and the result obtained,
y, will be reported together with information about the ac-
curacy of y as an estimate of Y .

Although some measurements are simple in princi-
ple, the GUM uncertainty calculations often become

1Another paper presented at this meeting discusses the requirements
for digital representation of traceability in more detail [2].

2Some of these terms may represent other measured quantities. For
example, one might measure electrical resistance by first measuring po-
tential difference V and current I and then finding the resistance as their
ratio R = V/I . There will also be terms representing nuisance factors
that perturb the measurement, such as Johnson noise in a resistor.



complicated—even unwieldy. It is necessary to characterise
the physical and numerical aspects of a measurement in or-
der to assess how susceptible the process is to perturbation.
This is the nature of traceability and the need for reliable in-
formation about accuracy at the end of a traceability chain.

A GUM calculation assesses the sensitivity of a measure-
ment to each input,

ci =
∂Y

∂Xi
, (2)

and weights this by the typical magnitude of likely error in
the input value, denoted u(xi) and called a standard uncer-
tainty. This obtains a component of uncertainty,

ui(y) = ci u(xi) , (3)

where the subscript ‘i’ refers to the input quantity Xi.
When reporting a final result, the various components of
uncertainty will be combined in particular way (see equa-
tion (7) below). However, this is only necessary at the end
of the traceability chain where an inference about the mea-
surand will be made. Along the chain, sets of components
of uncertainty should be passed between stages.

To express the nature of a traceable measurement prop-
erly, we must extend the usual GUM notation. Quite gener-
ally, a full measurement function f(·) can be decomposed
into an arbitrary number of intermediate steps or stages,
h = 1, · · · ,m, each described by a function

Yh = fh(Λh) . (4)

The set of inputs to the hth stage, Λh, may include previous
stage outputs, Y1, · · · , Yh−1 and any of the model inputs
X1, · · ·Xl. The last stage yields the measurand, Y = Ym.

In this notation, the component of uncertainty in a stage
output yh due to uncertainty in the ith model input value is

ui(yh) =
∑

zk∈Λh

∂Yh

∂Zk
ui(zk) , (5)

where Zk is a dummy variable for a direct input to the stage
function and zk is the corresponding estimate. This equa-
tion is simply the chain rule for partial differentiation ap-
plied to equation (3). Note that the number of elements in
Λh is the number of direct arguments to the stage function.

A simple, but not uncommon example of a single stage
is when a quantity is compared at two locations and, or,
times. The stage evaluates the difference between interme-
diate outputs. If two previous stage outputs, Yq and Yr say,
are subtracted at stage h, then equation (5) becomes

ui(yh) = ui(yq)− ui(yr) . (6)

Clearly, the contribution to uncertainty in the difference due
to any common influence i (a systematic influence) may be
reduced (or even cancel completely, if ui(yq) = ui(yr)).

A complete set of components of uncertainty,
{u1(yh), u2(yh), · · · , ul(yh)}, at stage h can be ob-
tained by evaluating (5) for i = 1, 2, · · · , l.3 We emphasize
the importance of subscripts, because terms in the
mathematical model must be identified in the data model.

3. THE DATA MODEL
A useful abstraction is created by encapsulating a value

and a corresponding set of components of uncertainty in
a data structure called an uncertain number. Uncertain
numbers represent quantities (i.e., capitalised terms) in the
mathematical model.

A logical model of uncertain numbers for real-valued
data is shown as a UML class diagram in Figure 1.4 An
UncertainReal object encapsulates a value and asso-
ciated components of uncertainty. This class satisfies the
common requirements for data, but there are two spe-
cialisations: an Elementary object represents an in-
put to the measurement model (one of the Xi), and an
Intermediate object represents an intermediate stage
output (one of the Yh). Objects of these subclasses have a
unique identifiers, which refer to a specific object and play
the role of subscripts in the mathematical notation.

Elementary

value: Float
degrees_of_freedom: Float
standard_uncertainty: Float

uid(): UniqueIdentifier
correlation(i: UniqueIdentifier): Float

«type»
UncertainReal

value(): Float
u_components(): Set

Intermediate

uid(): UniqueIdentifier

Fig. 1: There are two specialisations of the UncertainReal

class: Elementary and Intermediate. An Elementary

object represents a model input and an Intermediate object
represents a stage output. The uid operation produces a unique
reference to an uncertain-number object, which plays the role of a
subscript (i or h) in the mathematical notation.

3Note, when j = k, xj and zk are the same and so uj(zj) represents
u(xj)—the standard uncertainty of the input estimate xj .

4The Unified Modelling Language (UML) is a general-purpose mod-
elling language used to visualize the design of a system.



Elementary objects are constructed with a value (es-
timate), a standard uncertainty and a number of degrees of
freedom.5 An input (one of the Xi) has just one compo-
nent of uncertainty, which equals the standard uncertainty
(see footnote 3). A correlation coefficient can be declared
between two Elementary objects. These coefficients are
used to evaluate the final stage uncertainty (see §4 below).

A Set of ComponentOfUncertainty objects is re-
turned by u_components(). This is needed to evalu-
ate equation (5) from one stage to the next, before the final
stage, and to evaluate the combined uncertainty and degrees
of freedom at the final stage. Each element in this set con-
sists of a value and a reference to the corresponding input
(elementary uncertain number), as shown in Figure 2.

ComponentOfUncertainty

component_value: Float
uid: UniqueIdentifier 

Fig. 2: A ComponentOfUncertainty encapsulates two el-
ements: the numeric value of a component of uncertainty and a
digital identifier corresponding to ‘i’ for model input Xi.

4. REQUIREMENTS ON THE DATA MODEL
The model described in the previous section has the es-

sential ingredients for a GUM uncertainty analysis. At the
final stage, a combined standard uncertainty will be evalu-
ated. The GUM calculation is

u(y) =

 l∑
i=1

l∑
j=1

ui(y) r(xi, xj)uj(y)

1/2

, (7)

where r(xi, xj) is the correlation coefficient between the
estimates of Xi and Xj . Component of uncertainty val-
ues are obtained from elements of the set returned by
u_components(), as well as unique identifiers for each
Elementary object. A value of r(xi, xj) is returned by
Elementary::correlation(i).

A parameter, called the effective degrees of freedom, is
needed if any input quantities were estimated with finite de-
grees of freedom. The effective degrees of freedom, νy, is
obtained from the Welch-Satterthwaite equation [1, (G.2a)]

u4(y)

νy
=

l∑
i=1

u4
i (y)

νi
. (8)

Again, u_components() provides the components of
uncertainty needed. The degrees of freedom are provided
by the degrees_of_freedom attribute of each input.

5The degrees of freedom may be infinity.

The combined standard uncertainty and the effective de-
grees of freedom are used to evaluate what is called the ex-
panded uncertainty, which is qualified by a particular level
of confidence, typically 95% (see [1, Appendix G]).

4.1. Archiving records
Because of the distributed nature of traceability chains

and the need to retain metrological data for many years,
measurement data must endure over space and time. The
uniqueness of digital identifiers must be guaranteed any-
where and at any time after they have been created.

The ability to store data is needed to implement measure-
ment traceability chains. To provide a secure and endur-
ing record of an uncertain number, the value and associated
set of components of uncertainty must be stored, together
with all the elementary uncertain numbers referenced in
the component-of-uncertainty set. This allows results to
be restored later and combined with other data. Only
Elementary or Intermediate objects are stored.

5. APPLICATIONS OF THE MODEL
5.1. Reporting calibrations

According to the International Vocabulary of Measure-
ment, metrological traceability is implemented by relating
a measurement result back to a reference through a docu-
mented unbroken chain of calibrations, each contributing
to the measurement uncertainty [3, §2.41].

The stages of a measurement model may be considered
to correspond to the different calibration stages that estab-
lish traceability. At each stage, a report is produced by one
group of people (a laboratory) and sent to a different group
responsible for the next stage. This process presently re-
quires skilled operators to interpret data, but digital systems
could exchange data using uncertain numbers.

It is very common, nowadays, to report uncertainty as a
single number (representing an uncertainty interval), rather
than a set of components of uncertainty. This practice has
surely arisen from the convenience it affords, because it is
not actually prescribed in the GUM. Only for international
measurement comparisons (discussed in §5.3) are compo-
nents of uncertainty currently reported as a matter of routine
(actually a requirement). Our data model satisfies the re-
porting requirements of measurement comparisons. How-
ever, it could also be used to replicate single number un-
certainty reporting to people, while maintaining a more de-
tailed digital representation. In doing so, the familiarity of
current practice could be retained without sacrificing inter-
nally consistency in data processing [1, §04].

5.2. Automatic uncertainty calculation
When a mathematical expression is evaluated by a dig-

ital system, the expression is decomposed into a sequence
of simple expressions corresponding to predefined opera-



tions.6 It is possible to think of a staged measurement
model in this way too. The mathematical expression of a
model can be decomposed into basic functions, like sim-
ple arithmetic, trigonometric functions, and other standard
mathematical functions. A digital system can then simul-
taneously evaluate the values with associated sets of com-
ponents of uncertainty. This is a powerful way for dealing
with complicated measurement procedures [4, 5].

An example of this is a recent study that applied
uncertain-number software to a four-axis goniometric sys-
tem for measuring optical reflectance [6]. The measure-
ment model of this system has many configuration terms
that are not known exactly and must be considered to ac-
count for final uncertainties. By using uncertain numbers,
the authors were able to study the system performance
closely under different configuration settings. They were
able to gain a better understanding of the inherent correla-
tions between various measurement errors and significantly
improve the accuracy of certain measurements.

5.3. Comparison reporting and analysis
Reporting requirements for international measurement

comparisons carried out under the International Committee
for Weights and Measures (CIPM) Mutual Recognition Ar-
rangement are demanding [7]. Comparison protocols stipu-
late that participants shall provide detailed uncertainty bud-
gets together with measured values. In effect, this is asking
for uncertain numbers to be reported.

A recent study looked at using an uncertain-number data
model for measurement comparisons. A fictitious scenario
was created where participants reported results as uncertain
numbers and uncertain-number software was used for sub-
sequent data processing [8]. Based on actual comparison
data, results from a CIPM key comparison and a subse-
quent Regional Metrology Organisation (RMO) key com-
parison were processed and then linked to obtain degrees
of equivalence for every participant. Although in principle
the data processing involved is straightforward, in practice
it becomes complicated. Common error terms give rise to
correlations in the data that must be carefully handled, so a
direct GUM approach becomes impractical. However, the
study showed that uncertain-number data model and soft-
ware considerably simplified the analysis and comparison
linking, and provided insights into the results than would
not otherwise have been available.

6. FINAL REMARKS
The data model presented here is fully GUM-compliant

yet quite simple. It implements the GUM notion of internal

6For example, computations on a pocket calculator are executed as a
sequence of basic operations.

consistency. Deployment of the model should not involve
too much work. An uncertainty analysis must be carried out
and adequately documented to satisfy traceability require-
ments, so this information is available already and could be
included in the exchange of data. The significant advan-
tage offered is that correlation between stage results due to
common factors can be properly accounted for. These ef-
fects can be propagated along chains and included in the
end-user’s handling of a result.
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