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Abstract  In modern power systems, the measurement 

infrastructure represents the backbone of any monitoring and 

control application. Indeed, the ever-increasing penetration of 

renewable energy sources and distributed generation has 

produced an operating scenario prone to instability and rapid 

variations. In order to address these challenges, current and 

voltage phasor measurements are typically acquired at each 

sensitive network node and then aggregated at local or central 

level in order to estimate the system state or to take control 

actions as the opening of a circuit breaker. From a normative 

point of view, the existing standards focus on the performance 

compliance of a single sensor, but they do not verify their 

actual interoperability. In this regard, this paper proposes a 

minor yet effective amendment to include in the digital format 

(Ethernet packet) of the measurement result a performance 

metric to be computed on-line. As proven by the numerical 

simulations, the proposed metric allows for an improved data 

aggregation and a more accurate state estimation. 
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1.  INTRODUCTION 

Modern power systems are characterized by an ever-

increasing integration of renewable energy sources and 

distributed generation [1]. In such scenario, the measurement 

infrastructure is the backbone of any situational awareness 

application [2], and consists of a distributed sensor network 

where, in each node of interest, a Phasor Measurement Unit 

(PMUs) provides time-stamped measurements of voltage and 

current phasors with an update rate of tens Hz [1]. By means 

of dedicated communication channels, these measurements 

are aggregated at local level (digital substation) or central 

level (control room), in order to guarantee prompt and 

effective reactions to possible unfortunate events.  

In the recent IEC Std 60255-118-1 (briefly, IEC Std), the 

compliance limits are expressed in terms of Total Vector 

Error (TVE), Frequency and Rate-of-Change-of-Frequency 

Error (FE and RFE, respectively). More precisely, two 

performance classes are envisioned: P- and M-class for 

protection and measurement applications, respectively [3], 

with specific focus on fast responsiveness and high accuracy. 

The National Metrological Institutes are responsible for 

the calibration and characterization of PMUs’ performance in 

laboratory conditions [4, 5]. Once deployed on the field, 

though, the interoperability between different PMU data 

streams is questionable [6].  

As proven in [7, 8], the PMU measurements might suffer 

from inconsistencies in the presence of transients. Indeed, the 

phasor signal model consists of a combination of few narrow-

band spectral tones. If such assumption is no more valid, as 

the signal energy is spread all over its spectrum, a definitional 

uncertainty issue arises [9]. 

In the metrology and digital transformation context, this 

represents a valuable test case for establishing new features 

and extended characterization techniques, to guarantee a full 

comparability of the results provided by any type of sensor, 

even after calibration. In view of a massive deployment of 

similar devices in the power system, the development of tools 

and metrics for the on-line assessment of measurement 

reliability is necessary, and new regulatory efforts for the 

standardization of such procedures must be envisioned.  

In this paper, we discuss the current format employed for 

the transmission of PMU measurement results and propose a 

minor yet effective amendment to include a reliability index, 

computed on-line and thus not significantly affecting the data 

reporting latency. The same information is employed to refine 

the results of a state estimation application in a realistic power 

system scenario. 

The paper is organized as follows: In Section 2, the on-

line metrics are introduced and thoroughly characterized. In 

Section 3, we present the data packet format and the possible 

extension to include the novel performance metrics. In 

Section 4, a state estimation example proves the efficacy of 

the proposed metrics. Finally, Section 5 provides closing 

remarks and outlines future steps. 

2.  SIGNAL MODEL AND RELIABILITY INDEX 

A generic power signal can be represented by a non-linear 

dynamic model: 

x�t� =  A �1 + ε��t�
 cos � 2π f t + φ + ε��t��  
+ η�t�  +  z�t� 

(1) 

where �, �, and � are the amplitude, frequency and initial 

phase of the fundamental component, respectively. The time-

varying terms ��  and ��  account for amplitude and phase 

dynamics, in terms of polynomial, exponential or modulation 

trends. The additive terms   and !  represent the spurious 

contribution of narrow- and wide-band disturbances: the first 



one refers to the combination of (inter-)harmonic terms, while 

the second one account for continuous-spectrum components 

as white or coloured noise, decaying DC or transients. 

In any PMU-based measurement system, the first step of 

the measurement chain consists in the acquisition process: 

x"n$ ≃  x�t =  nT'�, T'  =  F'*+, n =  1, … N' (2) 

where ./ is the sampling rate and 0/ is the sample length.  

Given the acquired sample series, the PMU is required to 

estimate the synchrophasor  1̂ , frequency �3  and Rate of 

change of frequency (ROCOF) 456  associated to the 

fundamental component: 

1̂"7$ =   �3"7$ 8*9�:; � 63"<$*6=
<>? @  �A "<$@;B5C"<$>?D
  (3) 

where the superscript indicates the estimated parameters, 

while EF  and 7  are the reporting period and the reporting 

index, respectively. The subtraction by the system rated 

frequency �G allows for expressing the phase contribution due 

to off-nominal signal frequencies.  

The phasor signal model relies on the assumption that the 

signal energy is stationary within the considered observation 

interval and that the signal energy is mostly concentrated in a 

narrow bandwidth around the fundamental frequency. When 

these assumptions are not met (e.g. during an instantaneous 

step change of amplitude or phase), the PMU estimates suffer 

from the definitional uncertainty due to the model 

inconsistency between the spectral properties of the signal 

under test and its phasor representation.  

Consequently, the recent literature has discussed the 

metrological significance of standard performance metrics in 

real-world operating conditions and proposed alternative 

approaches for the assessment of the PMU reliability during 

transient conditions. In particular, novel metrics have been 

introduced in [5], defined in the time domain and not relying 

on the phasor signal model, thus do not introduce any 

constraint regarding the spectral bandwidth of the observed 

phenomenon. 

Based on the PMU estimates, it is possible to recover the 

time-domain trend of the fundamental component as: 

 HI"J$ =  �3 cos�2K�3JE/ + �I + K456�JE/�:
 (4) 

and define its discrepancy with respect to the corresponding 

acquired sample series in terms of Normalized RMSE: 

 nRMSE = P∑�RI"S$*R"S$�
TU  (5) 

If we consider the PMU estimation as a non-linear fit process, 

the nRMSE quantifies the residuals' energy, that can be 

interpreted as an assessment of the signal energy (and thus 

signal information content) that has been neglected or 

misrepresented due to the inconsistency between phasor 

model and acquired sample series.  

As further explained in [10], a correct interpretation of the 

nRMSE metric requires a preliminary characterization of its 

variation range and sensitivity to typical grid disturbances. 

For this analysis, we simulated test waveforms representative 

of real-world operating conditions, either normal or critical, 

and we reproduced a measurement data stream, as provided 

by a well-known phasor estimation algorithm, namely the 

Compressive Sensing Taylor-Fourier Model (cs-TFM) [11].  

In particular, we considered the following four scenarios: 

1. a normal operating condition with steady-state 

amplitude and phase, while the frequency varies with 

a “random walk”-like trend (as measured in the EPFL 

campus) [12]; 

2. an instantaneous frequency step of -2 Hz followed by 

a steep frequency ramp of 8 Hz/s until coming back 

to 50 Hz; 

3. a signal characterized by phase and amplitude 

modulations whose period is in the order of 10 s, as 

inspired by the inter-area oscillation that was 

recorded in Lausanne in December 2016 [13]; 

4. a three-phase fault at the transformer secondary 

winding (ungrounded terminal) of the bus feeder in 

the IEEE 34-bus test grid [8]. 

Table 1 reports the mean V and standard deviation W of 

the nRMSE metric in the four considered test cases. 

 

Table 1. Mean and standard deviation of the selected performance 

metrics in the current test waveforms  

Test case Alg. 
nRMSE (%) 

V W 

1 
cs-

TFM 
18.22 0.07 

2 
cs-

TFM 
66.63 27.94 

3 
cs-

TFM 
18.56 0.05 

4 
cs-

TFM 
78.94 45.35 

 

Based on the reported distributions, the nRMSE metric 

proves to be able to discriminate between “good” and “bad” 

data, i.e. data relying on an inconsistent signal model as in test 

case 2 and 4 where step changes occur. 

3.  STANDARD AMENDMENT PROPOSAL 

The IEC Std defines the structure of the measurement data 

packet as provided by a compliant PMU. As shown in Fig. 1,  

It is composed of three main fields: 1) the header specifies the 

PMU id, the configuration parameters and the associated 

time-stamp; 2) the measurement data; and 3) possible 

repetitions of previously transmitted data (in case of packet 

loss or aggregation needs). 

Focusing on the measurement data field, we can identify 

six main subfields (byte size in brackets). All values are in 32-

bit floating-point and phasors are in polar format. Analog and 

digital subfield refer to specific input/output ports, whereas 

STAT contains bit-mapped flags defining current state and 

quality info (e.g. internal state, sensor malfunction).  

In view of integrating PMU data in more sophisticated 

control strategies, we propose two possible amendment to the 

packet structure, as derived from the proposed metrics. 

Possible amendment 1: If a local control application is 

envisioned, the PMU could verify the bad data detection 

internally and use a single extra bit as a Boolean flag, where 

1 indicates the packet carries potential bad data (due to model 

inconsistency and not only on internal malfunction).  

Possible amendment 2: In case of a more centralized 

approach, an extra subfield of 4 bytes could be dedicated to 

transmit the nRMSE.  



These amendments would not affect the overall packet 

size in any significant way; neither would request an 

excessive effort from the computation and transmission 

capabilities. On the metrological side, though, they would 

provide a new tool for investigating the actual comparability 

and interoperability of measurements taken from different 

sensors, and thus quantify in a more rigorous way the 

uncertainty in many control applications. 

 

 
Fig. 1. Measurement data packet structure as defined in [3]. 

4.  STATE ESTIMATION TESTBENCH 

The knowledge of this reliability metric opens up new 

possibilities at different network levels. At the sensor level, it 

can be seen as a flag of possible instrument failure. At a higher 

and aggregated level, it can be used to detect fault or 

anomalies. In this regard, this information has been proven to 

be capable of improving the accuracy in fault location [14]. 

In this paper, instead, we evaluate the possibility of using 

the reliability metric to define the most suitable weights in a 

Weighted Least Squares (WLS) state estimation [15]. In 

particular, our focus is on determining the confidence interval 

of the nRMSE metric and deriving a robust approach for its 

application in measurement-based applications [16]. 

In Matlab Simulink programming environment, we 

reproduced the IEEE 14-bus test case. For completeness, the 

one-line diagram of the network is reported in Fig. 2. It is 

worth noticing that the IEEE 14-bus test case represents a 

portion of the American electric power system (in the 

Midwestern US) as of February, 1962. It consists of 14 buses, 

five generators, and 11 loads [17]. 

 

 
Fig. 2. On-line diagram of the IEEE 14-bus test case [17]. 

In each bus, we deployed a PMU model that measures 

both voltage and current phasors. For this analysis, the PMU 

is set in P-class configuration, with a sampling rate of 5 kHz, 

an observation interval of 60 ms, and a reporting rate of 50 

frames per second (fps). 

The measurement uncertainty inherent in the PMU 

acquisition process is modelled through two independent 

contributions, namely the distortion due to wide- and narrow-

band disturbances, and the systematic error introduced by the 

instrument transformer. The wide-band distortion is modelled 

as additive white Gaussian noise, such that the Signal-to-

Noise ratio is equal to 45 and 35 dB for voltage and current 

waveforms, respectively.  

As regards the instrument transformers, in this 

preliminary stage of the research we consider only the 

systematic error contributions, as we assume that the non-

linear effects are covered by noise and harmonics. We 

consider classes 0.1 and 0.5 for voltage transformers, and 

classes 0.2 and 0.5 for current transformers. 

The cs-TFM is a dynamic estimator, i.e. it recovers not 

only the fundamental synchrophasor, but also its first- and 

second-order derivatives as computed around the reporting 

time instant. The time-domain trend of the fundamental 

component can be thus computed in two ways: 

 Static: with only the zero-order parameters: 

amplitude, frequency, phase, ROCOF; 

 Dynamic: considering all the derivative terms, i.e. 

accounting also for the parameter variations within 

the considered window. 

The different formulations result in different nRMSEs and 

consequent considerations. In the static case, we measure the 

estimation reliability of the IEC Std parameters, whereas in 

the dynamic case, we evaluate how much the dynamic model 

is capable of tracking their time variations. 

 In Fig. 3(a), we present the voltage waveform as acquired 

at the node 4 of the IEEE 14 bus network. The effect of the 

dynamic load model is evident in the amplitude level 

fluctuations. In Fig. 3(b), the corresponding nRMSE 

computed according to the static and dynamic phasor 

formulations are represented in blue and red, respectively. 

Once again, the static one is more sensitive to the parameter 

time variations, whereas the dynamic one exhibits a nearly 

constant value (mainly dependent on the narrow- and wide-

band distortion levels). 

 
Fig. 3. In (a), voltage signal as acquired by the PMU at node 4 (VT 

and CT class 0.5). In (b), nRMSE measured based on static (blue) 

and dynamic (red) phasor representation. 

In the absence of ground-truth reference values, a Load 

Flow (LF) analysis has been conducted to define the 

instantaneous value of voltage and current at each reporting 

time instant. In this context, we ran a WLS state estimation 

with three different weight configurations. As shown in Fig. 

4(a), the weights are set equal to the inverse of the systematic 

error variances or to the inverse of the nRMSE in its static or 

dynamic formulation.  



In Fig. 4(b), it is interesting to observe how the instrument 

transformer class and the dynamic model provides 

comparable values, whereas the static one associates a lower 

weight to any measurement taken during a non-stationary 

condition. 

 
Fig. 4. In (a), WLS weights based on VT class (green), static (red) 

and dynamic (blue) nRMSE. In (b), WLS estimates of voltage real 

part in node 4 against the load flow (black) reference values. 

As expected, the dynamic formulation does not add any 

improvement with respect to the class information, whereas 

the static one allows for a reduction of the noisy oscillations. 

In a more quantitative way, the RMS error for the three 

different configuration is equal to 700, 750 and 500 ppm for 

the class, dynamic and static approach, respectively. 

5.  CONCLUSIONS 

This paper focused on the determination of confidence 

interval associated to metrics for a robust approach for their 

application in measurement-based controlling efforts. In this 

preliminary stage of the research, we consider only the 

systematic error contributions, as we assume that the non-

linear effects are covered by noise and harmonics.  

By means of numerical simulations, we presented a 

possible application of the reliability metrics in a WLS-based 

state estimation, highlighting the performance enhancement 

and the theoretical limits of the proposed approach.  

The simulations results proved the scarce accuracy of the 

PMU-based estimates in dynamic conditions, since nRMSE 

distributions present inconsistent trends. Further work 

regarding these promising findings is required, not only in the 

PMU level, but also in the potential evaluation of these 

metrics as performance assessment across the grid. 

OPEN SCIENCE 

Towards open science, i.e., efforts aimed at achieving 

more openness in science and the necessary paradigm shift, 

the current paper follows FAIR principles [18] by making all 

used datasets and codes available in the Zenodo community 

for Sensor Network Metrology: 

https://zenodo.org/communities/sensornetworkmetrology 
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