
IMEKO TC6 International Conference on Metrology and Digital Transformation
September 19 – September 21, 2022, Berlin, Germany

SPECIFICATION FOR AUDIT TRAIL IN OIML D31: TOWARD RUNTIME
VERIFICATION
Hiroshi Watanabe a,*

aNational Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and
Technology (AIST), Tsukuba Central 3, Tsukuba 305-8563, Japan

*Corresponding author. E-mail address: hiroshi-watanabe@aist.go.jp

Abstract – In general, manually checking a system log does
not scale up, if the log becomes large. The problem also
arises the case with checking an audit trail in verification of
a measuring instrument under legal control. Software sup-
port for the check is critical. In this study, we address an ap-
proach to use Runtime Verification techniques for checking
an audit trail. As an initial attempt to advance the approach,
we consider the formal specifications of an audit trail for
the check. Analysing the requirements in guidance OIML
D31, we obtained abstract formal specifications for an au-
dit trail. As an extension of the approach, a trend toward
digital transformation for audit trails can be envisaged.

Keywords: legally relevant measuring instrument, OIML
D31, audit trail, verification, traced update, Runtime Verifi-
cation

1. INTRODUCTION
Software-controlled measuring instruments under legal

control have audit trails, which are used as both evidence
of and a protection measure against intervention. Checking
an audit trail is concretely required as a test item in legal1

verification in guidance OIML D31 [1, 2]. The check will
soon be conducted under the existing legal verification. The
check itself is designed to be run manually; however, man-
ual checking does not scale up. Consider, for example, a
legal verification personnel (who might not be an informa-
tion technology expert), checking an audit trail line-by-line
at a simple instrument display or on printouts at a site. Soft-
ware support for checking audit trails is critical.

Our primary question is whether we can use Runtime
Verification [3, 4] for the check. Runtime Verification (RV)
is a verification technique that symbolically checks whether
a trace (i.e., finite sequence of recorded events) of a system
under scrutiny satisfies (or violates) a given formal speci-
fication for the trace. RV also includes a technique or tool
that generates software called a monitor that can be built
into the system and execute the checking. RV has emerged
from symbolic model checking [5] in the field of formal
methods, and has advanced over the past 20 years [6]. For
describing the formal specification for the trace in RV, lin-
ear temporal logic (LTL) [7] is most commonly used.

As an initial attempt toward using RV, we analyse the re-

1For denoting a verification of a measuring instrument in legal metrol-
ogy, we prefix “legal” to the verification in this paper.

quirements of audit trails in the current 1CD [2] of OIML
D31[1] and consider formal specifications for these require-
ments in LTL. As a result of our analysis, we obtain abstract
formal specifications with respect to test items for legal ver-
ification in section 4.1. Moreover, we obtain the specifica-
tions for other relevant requirements, mostly Traced update,
in section 4.2. We discuss our contribution and the direc-
tion of digital transformation for audit trails in section 5. In
the present study, we do not yet delve into the RV itself.

2. OIML D31 AND AUDIT TRAILS
OIML D31 [1] lists requirements for software-controlled

measuring instruments with respect to the following top-
ics: Software for the measuring instruments; Type evalua-
tion; and legal Verification. D31 is a guidance document
of OIML for implementing international recommendations
for individual measuring instruments. The latest version
[1] was published in 2019. The revision process is ongo-
ing, and we use the current 1CD [2] for the analysis in the
present study.

An audit trail is “continuous data containing a time
stamped information record of events [2, 3.2.1]”. The re-
quirements in 1CD are summarized in the following sec-
tions 2.1, 2.2, and 2.3.

2.1. Events to be recorded in an audit trail
First, the following events are required to be recorded in

an audit trail:

• changes in the value of the legally relevant parameters
[2, 3.2.19 and 6.2.3.6];

• modifications or updates of the legally relevant soft-
ware [2, 3.2.19], especially the record of Traced up-
date including the information of success/failure [2,
6.3.8.4.1 and 6.3.8.4.8]; and

• other activities that are legally relevant and that might
influence the metrological data/or characteristics, as
follows: all changes for specified parameters of dy-
namic modules [2, 6.2.3]; exchange of components [2,
6.3.2.1.3 Examples 2)]; modification of access permis-
sions of legally relevant files [2, 6.3.6.5.4 Examples
1)]; and changes to the operating system configura-
tions [2, 6.3.6.7.2 Example].



2.2. Test items in legal verification
There are three (actually two) test items with respect to

an audit trail, as follows:

1. The parameters requiring integrity should be checked
by the entries of audit trails as check the audit trail for
events concerning parameters [2, 8.2.3.2].

2. Actually, the requirement is not to check the audit trail
but to check whether all settable parameters are within
the allowed range [2, 8.2.3.1].

3. The entries of the audit trail for traced updates should
be checked in the Identity of the software [2, 8.2.4].

No further information about concrete methods for
checking audit trails is available in D31 except a clause re-
lated to documentation, which states that securing means as
well as means to provide evidence of an intervention and the
method to check them (e.g. hardware seals, event counters,
audit trails) shall be included in the certification [2, 7.2.2].
This statement implies that type-wise concrete methods are
left to be developed and provided by manufacturers.

2.3. Other relevant requirements: Traced update
In addition to Verified update, Traced update is the other

software update procedure without subsequent legal verifi-
cation after the update. Its requirements potential for check
by audit trail are summarized as follows:

1. The traced update procedure is specified in [2, 6.3.8.4]
with a flowchart [2, Figure.1].

2. Depending on national legislation, user or owner con-
sent is required before proceeding with an update pro-
cess [2, 6.3.8.4.2].

3. If some of the securing or protection measures of the
instrument are turned off to enable updating, they shall
be turned on again immediately after update, indepen-
dent of the result of the update process. [2, 6.3.8.4.3].

4. Switching to an inoperable mode after failure of either
the integrity test or the authenticity test is required [2,
6.3.8.4.7].

In the present study, we do not address the requirements
related to the following topics in revision [2]: remote veri-
fication and dynamic modules of legally relevant software.

3. LINEAR TEMPORAL LOGIC (LTL)
The most common specification language used for spec-

ifying traces in RV is LTL, which was proposed by Pnueli
[7]. Here, we briefly introduce a fragment of LTL for pre-
senting our results in section 4. More detailed descriptions
are available in the literature, such as [3, 4, 5].

LTL2 is an extension of propositional logic with temporal
connectives: unaries G, F, and a binary U . Here, G
stands for “Globally”,F for “Future”, and U for “Until”.

We here introduce some terminology related to traces—
finite sequences of events—before we describe the seman-
tics of LTL. The successor of a trace is the rest of it except
the first event. For any trace t, the t itself and all succes-
sors up to the final successor consisting of a single event
are called descendants of t.

In RV, formulas of LTL are interpreted over traces to have
a value of true or false. We assume that atomic proposi-
tions represent properties of events. Let t be a trace. An
atomic proposition p is true at t if the first event of t has
the property p. For connectives for propositional logic, the
usual interpretation can be extended naturally over traces.
Finally, the interpretation for temporal connectives is given
for arbitrary formulas P and Q as follows:

• FP is true at t iff P is true at some descendant of t;

• GP is true at t iff P is true at all descendants of t; and

• P UQ is true at t iff Q is true at some descendant and
P is true at all descendants before the descendant.

We present some typical examples of LTL formulas as
follows:

Globally, P is false G¬P
Globally, Q responds to P G(P → FQ)
P is always false between Q and R G((Q ∧ FR) → ((¬P ) U R))
P becomes true between Q and R G((Q ∧ FR) → ((¬R) U P ))

The first type of formula is called a safety property; it en-
sures something undesirable (here, the property P ) never
occurs. The second type of formula is called a liveness
property; it ensures that something desirable (here, the
property Q) will occur eventually. For other examples of
LTL formulas, we refer the reader to the well-known spec-
ification patterns of Dwyer et al. [8].

4. FORMAL SPECIFICATION FOR AN AUDIT
TRAIL

Analysing the requirements in OIML D31, we ob-
tained abstract formal specifications for an audit trail,
which we present in the following sections 4.1 and
4.2. We refer to the specifications as “abstract” be-
cause, to represent the requirements as formulas
of LTL, we introduce abstract properties, such as
the terms changeParameterRequiringIntegrity and
changeParameterOutOfRange in Tables 1 and 2. Each of
these properties corresponds to an event or a property of an
event either stated in or inferred from the requirements. In
the following sections, we omit detailed explanations for
individual abstract properties because of space constraints.

2We omit the next time operator X for simplicity of our presentation
of this work.



Table 1: Abstract formal specifications for test items in section 2.2

8.2.3.2 Integrity. Any change of parameter requiring integrity never occurs.
G¬changeParameterRequiringIntegrity

(1)

related to 8.2.3.1 Correctness. Any change of parameter out of allowed range never occurs.
G¬changeParameterOutOfRange

(2)

8.2.4 Identity of the software. Any traced update log with entry of illegal software identification never occurs.
G¬tracedUpdateLogIllegalSoftwareIdentification

(3)

example related. While maintenance mode, no measurement succeeds to produce a measurement result.
G(startMaintenanceMode ∧ FstartNormalMode → ¬successMeasurement U startNormalMode)

(4)

example related. While normal (operable) mode, any unauthorised change of parameter or software never occurs.
G(startNormalMode ∧ F(startMaintenanceMode ∨ startUpdateProcess)

→ ¬changeParameterorSoftwareUnauthorized U (startMaintenanceMode ∨ startUpdateProcess))

(5)

Table 2: Abstract formal specifications for Traced update in section 2.3 and others.

6.3.8.4 and Figure 1. Obeying the procedure of Traced update in the flowchart [1, 2, Figure 1].
G(requestUpdate → F(ownerConsent ∨ ownerNotConsent)),

G(ownerNotConsent → FreturnToNormalMode),

G(ownerConsent → FfileLoaded),

G(fileLoaded → F(validIntegrity ∨ invalidIntegrity)),

G(validIntegrity → F(validAuthenticity ∨ invalidAuthenticity)),

G(validAuthenticity → FinstallActivate),

G((invalidIntegrity ∨ invalidAuthenticity) → F(discardFilesKeepOld ∨ switchInoperableMode)),

G((installActivate ∨ discardFilesKeepOld ∨ switchInoperableMode) → FlogTracedUpdate),

G(logTracedUpdate → Freboot)

(6)

6.3.8.4.2. The user or owner expresses their consent before the measuring instrument starts update procedure.
G(requestUpdate ∧ (FstartUpdateProcess) → ¬startUpdateProcess U ownerConsent)

(7)

6.3.8.4.3. The protection measures are turned on again before an event representing “immediately after update”.
FturnOffProtectionMeasure

→ G((installActivate ∨ discardFilesKeepOld ∨ switchInoperableMode)

→ (¬immediatelyAfterUpdate U turnOnProtectionMeasure))

(8)

related to 6.8.3.4.3. While the protection measures are turned off, any unauthorised change of parameter or software never occurs.
Here, the unauthorised change excludes the one caused by the update procedure itself.
G(turnOffProtectionMeasure

→ (¬changeParameterorSoftwareUnauthorizedExceptUpdate U turnOnProtectionMeasure))

(9)

6.3.8.4.7. Failing either test, without switching to inoperable mode, the measuring instrument discards the update files.
G(((invalidIntegrity ∨ invalidAuthenticity) ∧ (¬switchInoperableMode U endTracedUpdate))

→ (¬endTracedUpdate U discardFilesKeepOld))

(10)

6.3.8.4.7. While inoperable mode, the measuring functions are inhibited.
G(switchInoperableMode

→ (measuringFunctionInhibited U (startNormalMode ∨ verifiedSubsequently ∨ (GmeasuringFunctionInhibited))))

(11)

6.3.2.1.3 Example 2). Any unauthorised exchange of components never occurs.
G¬exchangeComponentUnauthorized

(12)

6.3.6.5.4 Example 1). Any unauthorised change of access permission never occurs.
G¬changePermissionUnauthorized

(13)



4.1. Specifications for test items in legal Verification
For test items described in section 2.2, we obtained a

list of abstract specifications, represented as formulas of the
safety property, (1), (2)3 and (3) in Table 1. As related to
these specifications, we obtained additional examples of ab-
stract specifications (4) and (5).

4.2. Specifications with respect to Traced update and
others

For the Traced update described in section 2.3, we ob-
tained a list of abstract specifications (6), (7), (8), (10) and
(11) in Table 2. As related to (8), we obtained an additional
example of specification (9) that any unauthorised change
of a parameter or software never occurs while protection
measures are turned off. We remark that the formulas of
(6) are directly extracted from the flowchart [2, Figure 1]
describing the Traced update procedure.

With respect to both exchange of components [2,
6.3.2.1.3 Example 2)] and modification of access permis-
sions of legally relevant files [2, 6.3.6.5.4 Example 1)] de-
scribed in section 2.1, we obtained abstract specifications
(12) and (13), respectively.

5. DISCUSSION
Our contribution is summarized as follows:

• The obtained abstract formal specifications in section
4 will provide detailed insights into the design required
for both RV and audit trails in measuring instruments.
These insights will lead to the concrete implementa-
tion of the approach of using RV for checking audit
trails.

• The most important outcome is that our abstract for-
mal specifications will be available in the practical
check by instantiating the abstract properties in the
specifications.

• Some readers might assume that the general query in
database management systems is sufficient if only the
test items described in section 2.2, which are repre-
sented as safety-property formulas (1), (2) and (3) in
Table 1, are checked. Although we agree with the ob-
servation, we do not necessarily need to restrict our-
selves only to the test items. Our formulas suggest that
the check can be extended seamlessly toward other rel-
evant requirements (e.g., formulas in Table 2) without
changing the framework.

For future work, we envisage the following directions of
digital transformation for audit trails:

• Use of RV for checking audit trails. As a part of
the documentation for type examination, manufactur-
ers instantiate our abstract specification for an audit

3Although (2) is not actually required in test items, as we pointed out
in section 2.2.2, we include it as an item.

trail of their type and submit it for approval. The spec-
ification is examined by relevant authorities under the
process of type evaluation. The approved formal spec-
ification is used for legal verification for a specimen
of the type. For this purpose, future research oppor-
tunities include developing, for example, a standard
format and evaluation methods for audit trails.

• Use of RV for generating legally relevant monitors for
audit trails. As a potential next stage beyond mere
check, the legally relevant monitors will be built into
measuring instruments enabling them to work as run-
time checking facilities.

6. CONCLUSIONS
Analysing the requirements in OIML D31, we obtained

abstract formal specifications for audit trails; the specifica-
tions were obtained as LTL formulas that will be used in
the RV framework. Our obtained specifications suggest ex-
plicitly the remaining work for designing and implementing
the approach using RV for checking audit trails. Moreover,
a progression toward digital transformation for audit trails
can be envisaged.

REFERENCES
[1] OIML D31:2019, General requirements for software con-

trolled measuring instruments. https://www.oiml.o
rg/en/publications/documents/en/files/

pdf_d/d031-consolidated-e19.pdf (accessed 25
March 2022).

[2] OIML TC 5/SC 2/p 4, Revision of OIML D31: General re-
quirements for software controlled measuring instruments,
1CD, 2021. https://www.oiml.org/en/tc-sc-p
g/committee-drafts/files/tc5-sc2-p4-1cd

.zip (accessed 25 March 2022).
[3] E. Bartocci, Y. Falcone, A. Francalanza and G. Reger, Intro-

duction to Runtime Verification, in: E. Bartocci and Y. Fal-
cone (Eds.), Lectures on Runtime Verification, LNCS, 10457,
pp. 1-33, 2018.

[4] M. Leucker and C. Schallhart, A brief account of runtime ver-
ification, J. Logic Algebraic Program., vol. 78, no. 5, pp 293-
303, 2009.

[5] E. M. Clarke, O. Grumberg, D. A. Peled and H. Veith, Model
Checking, Second Edition, MIT Press, 2018.

[6] Runtime Verification, https://runtime-verificat
ion.github.io/ (accessed 25 March 2022).

[7] A. Pnueli, The temporal logic of programs, in: Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science, pp. 46-57, 1977.

[8] M. B. Dwyer, G. S. Avrunin and J. C. Corbett, Property spec-
ification patterns for finite-state verification4, in: Proceedings
of the second workshop on Formal methods in software prac-
tice (FMSP ’98), ACM, New York, pp. 7-15, 1998.

4see also A Specification Pattern System, 1998, https://peop
le.cs.ksu.edu/~dwyer/spec-patterns.ORIGINAL


