
IMEKO TC6 International Conference on Metrology and Digital Transformation
September 19 – September 21, 2022, Berlin, Germany

EXPRESSIVE TYPE SYSTEMS FOR METROLOGY
Conor McBride a, Georgi Nakov a, Fredrik Nordvall Forsberg a,*

aDepartment of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
*Corresponding author. Email address: fredrik.nordvall-forsberg@strath.ac.uk

Abstract – Modern programming language type systems
help programmers write correct software, and the software
they intended to write. We show how expressive types can
be used to encode dimension and units of measure informa-
tion, which can be used to avoid dimensional mistakes and
guide software construction, and how types can even help to
generate code automatically, which eliminates a whole class
of bugs.

Keywords: type systems, correctness, programming lan-
guages

1. INTRODUCTION
The digital transformation of metrology offers both chal-

lenges and opportunities. With increased software usage and
complexity, there is also a need to increase trust in the com-
putations performed — how do we know that the software
is doing what is expected of it? Computer Science offers a
wide range of formal methods and verification techniques
to tackle this challenge. As always, there is a balance to
be struck between how much additional effort is required
from the user, and how useful the verification procedure can
be. Our main thesis is that a lot can be achieved by simply
“bridging the semantic gap” between human and machine:
current common practice is for computers to mindlessly exe-
cute instructions, without understanding for what purpose.
This means that any verification must happen after the fact,
by a separate process. What if, instead, there would be some
way of communicating our intent as we are writing our soft-
ware? Then the machine could help us write it, rather than
just tell us off for getting it wrong after the fact. . .

We advocate for the use of type systems as a lightweight
method to communicate intent. Dependently typed program-
ming languages are a new breed of languages which have
type systems which are expressive and strong enough to
use types to encode the meaning of programs to whatever
degree of precision is needed. We can ensure that types
can be automatically checked at compile-time, and so they
provide machine-certification of the program’s behaviour at
low-cost. Concretely, we therefore get both lightweight and
machine-certified trust in the correctness of software.

In the metrology domain, in particular, we can make good
use of implicit tacit knowledge such as dimensional correct-
ness to help the computer help us. This is work currently
done by humans, but there is no reason why it could not be
done automatically by a machine instead. As a small case
study, we show that by turning informal comments about

the expected input format of a data into machine-readable
form, we can not only check that given data conforms to the
format, but automatically generate Matlab code for reading
from disk and converting to appropriate units, thus eliminat-
ing a source of bugs and increasing trust in the software.

Our goals are similar to other software projects for cal-
culation with physical quantities [Fos13, Hal20], but we
put additional emphasis on the use of types as a convenient
method of communication between human and machine.

2. TYPE SYSTEMS AS LIGHTWEIGHT FORMAL
METHODS

In programming languages such as Fortran or C, types
such as floating point numbers or integers are used to help
the compiler with memory layout. A pleasant side effect
is that basic errors such as trying to divide an integer by a
string can be detected and reported at compile time, rather
than at run time. While useful for avoiding disastrous results,
this is quite a negative view on types: they are against errors,
but are they also for something?

This century, types can be used to make an active contri-
bution by offering guidance during the program construction
process, not just criticism afterwards. We pay upfront by
stating the type of the program we want to write, but are then
paid back in the machine being able to use those types to
offer suggestions for functions to call, or even generate code
for boring parts of the program. The space within which we
search for programs is correspondingly smaller and better
structured.

For such help to be meaningful, the types available need
to be sufficiently expressive; it is usually not very instructive
to be told that we need to for example supply an integer, nor
is it going to be very helpful for the compiler to generate a
floating point number for us. As another example, consider
a type whose elements are matrices. As given, this is again
not very helpful — a matrix can, after all, be seen as a
(structured) collection of numbers, and we just said that
numbers in themselves do not carry much meaning. But we
can refine our type of matrices to a type Matrix(n,m) which
keeps track of the size n×m of the matrix: e.g., the type of
matrix multiplication can be usefully expressed as

Matrix(n,m)×Matrix(m, k)→Matrix(n, k)

i.e. insisting that the sizes of the input matrices are compati-
ble, and determining size of the output matrix. Furthermore,
if we were trying to write a program to implement matrix
multiplication, the above type would give us helpful hints



on what we need to produce.
For another example, consider implementing a program

that creates a block matrix by putting two given matrices
next to each other. It is natural to give it type

Matrix(n,m)×Matrix(n, k)→Matrix(n,m+ k)

i.e. we insist that both input matrices have the same number
of rows, and the number of columns in the output matrix is
the sum of the number of columns in the input matrices. We
see that computations such as m+k naturally arise in types —
to do a proper job classifying such programs as meaningful,
our systems must thus allow values and computations to
occur in types. Such type systems are called dependent type
systems [BD09], as types can depend on values. They give
us enough expressive power to meaningfully communicate
our intentions to the compiler.

3. UNITS OF MEASURE USING TYPES
The metrology domain is perhaps especially well suited

for the use of types to guarantee correctness, because the
prevalent use of dimensions (such as length and time) and
units of measure (such as metres and seconds) in many
respects play the same role as types: it is not dimensionally
correct to add a metre and a second. It thus seems natural
to use type systems to reduce dimension checking to type
checking. Indeed, many mainstream languages have support
for units, implemented using a wide range of techniques,
from static types to dynamic run-time checks (see Bennich-
Björkman and McKeever’s survey [BBM18] for more):

• Microsoft’s F# [Ken10] has units of measure built in to
static type checking;

• C++’s Boost Units library [SW10] uses templates to
check units statically;

• Java has a proposed API adding classes for dimen-
sioned quantities [DKS21], but run-time casts are in-
evitable;

• Haskell’s type system can now encode basic units of
measure as a library [ME14] or a typechecker plu-
gin [Gun15];

• Python libraries such as Pint [pin22] cannot do static
checking of dimensional correctness, but implement
run-time checks instead. Similarly MATLAB has sup-
port for dynamic unit checking using the Symbolic
Math Toolbox [Mat22].

However many of these solutions provide no static guaran-
tees, or rely on rather ad-hoc extensions of the type system,
often with hard to understand error messages as a result.
Encoding dimensions using dependent types is a more prin-
cipled way to include dimension checking in a programming
language. We briefly describe how we implemented a type-
checker including dimensions here [MNF22].

First, how are we to represent dimensions themselves?
Following Kennedy [Ken95], we fix a set D of fundamental
dimensions (such as length L, time T and mass M). We may
multiply or divide dimensions (for example forming mass
per time squared M/T2), and the order of dimensions do
not matter (mass times length M · L is the same as length
times mass L ·M). These considerations leads us to model
dimensions as elements of the free Abelian group over the
set of fundamental dimensions D [Sim94, §8.1].

For typechecking, we need to be able to decide if two
given dimensions are equal or not. This is made easier by a
normal form for elements of the free group: we first (arbitrar-
ily) impose a total order on the fundamental dimensions D
(for example mass before length before time M < L < T).
Any dimension may be given as a finite product of dis-
tinct fundamental dimensions, in the chosen order, raised
to nonzero integral powers. Hence to check equality of di-
mensions d ?

= d′, we can reduce d and d′ to normal forms
d = Mn0 ·Ln1 ·Tn2 , d′ = Mn′

0 ·Ln′
1 ·Tn′

2 , and then straight-
forwardly check equality of the exponents ni

?
= n′i, rather

than applying the group axioms directly.
With equality of dimensions in place, the crucial step in

making dimension checking part of type checking is now to
allow abstract dimensions [WO91]: addition is not length-
specific, but works in one arbitrary dimension, which can
stand for any dimension in particular. Similarly, multipli-
cation and division of quantities multiplies and divides ar-
bitrary dimensions respectively. By giving addition and
multiplication these types, and taking our refined notion of
equality of dimensions into account, dimension checking
simply becomes type checking. Gundry [Gun11] has shown
that the property of programs still having most general types
is retained in this setting.

As discussed by e.g. Hall [Hal22], dimension checking
seems to be more fundamental than “unit checking”. When
dimensions are encoded in types, units can be introduced as
“smart constructors” such as Watt _W : R→ Q (ML2T−3).
If this is the only way to introduce quantities, we can ensure
that only meaningful expressions enter the system. Simi-
larly, by only allowing the extraction of an actual number
at dimensionless types (which can for example be achieved
by dividing a quantity by a unit constant), only physically
meaningful information can flow out of the system.

4. USING TYPES TO AUTOMATICALLY
GENERATE CODE

Types are not just a stick to be beaten with when one
makes a mistake; they can also act as a carrot, for example by
enabling code generation. As a simple demonstration of this
principle, we have developed a program that automatically
generates code for reading and validating input data based
on type declarations. The implementation is available at
https://github.com/g-nakov/mgen.

Many metrology software packages come with careful



ivals :
nlayer : contains the @number of layers (2 or 3) in the sample
lams : array of thermal conductivities of layer @nlayer (in @W m^-2 K^-1).
kappas : contains radius of

- sample (in @cm)
- laser (in @mm)
- measuring (in @mm)

Rs : heat transfer coefficient for losses in @W m^-2 K^-1
- from front face
- from rear face
- curved side face

cps : specific heat capacities in @J kg^-1 K^-1
- of the front face
- of the rear face
- of the curved side face

tflash : duration of laser flash in @ms

Fig. 1: Formal input data description example

descriptions of input formats in their documentation, usually
describing what input is required (e.g. “thermal conductiv-
ities”), in what form (e.g. “an array with an entry for each
layer”), and in what unit (e.g. “Wm−2K−1”). However these
are written for humans, not machines, and consequently the
code to read the inputs and convert them to the internal
units used, if applicable, is also written by humans. This is
typically fiddly code, with perhaps nested loops, and many
opportunities for off-by-one errors to slip in.

Our approach is instead to make the description of the
input format formal, so that it can be understood by a ma-
chine, which can then write the code for reading the inputs.
In practice, this requires minimal changes to the description
— mostly ensuring that the required data is actually present.

An example input description is displayed in Fig. 1. An
input is declared with its name (for example ivals and
nlayer), followed by a colon ‘:’, followed by its descrip-
tion, which is for the benefits of humans. An input is either
a composite object (such as ivals), a scalar field (such
as nlayer), or an array (such as kappas). Details about
inputs which are important for the machine are tagged with
an @ symbol, such as if an input is a number (for example,
nlayer is tagged as a @number), or an array of a certain
length (for example, lams is tagged as an array of size
@nlayer). Later inputs can refer to earlier inputs for their
description (for example, the description of lams refer to
nlayer) — we are making full use of dependent types by
allowing later entries to depend on earlier ones. Each non-
number field entry has a unit attached to it, again indicated
by an @ symbol. These can either be attached to individ-
ual fields of an array (such as for the array kappas), or
uniformly for the whole array (such as the array Rs). Also
note that we allow SI derived units such as Watt W — we
convert these to their standard form in terms of SI base units
internally.

Given an input description, we first validate that it is
sensible: that array lengths are numbers, that field names
are not repeated, and that each scalar field has a unit. This
way, we can catch simple mistakes in the input description
such as typos or undeclared input fields.

After validating the input description, we can generate
code for reading input data following it. We currently gener-
ate Matlab code, but there is nothing Matlab specific about
what we do — it would be possible to generate code for
most programming languages. For the input description
from Fig. 1, we generate the following code:

function ivals = getinputsfromfile(fname);
f1 = fopen(fname);
c1 = textscan(f1, ‘%f‘);
src = c1{1};
fclose(f1);

rPtr = 1;
ivals.nlayer = src[rPtr];
rPtr = rPtr + 1;
for i = 1:ivals.nlayer
ivals.lams[i] = 1e3 * src[rPtr+i];

end
rPtr = rPtr + ivals.nlayer;
ivals.kappas[1] = 1e-2 * src[rPtr+1];
for i = 2:3
ivals.kappas[i] = 1e-3 * src[rPtr+i];

end
rPtr = rPtr + 3;
for i = 1:3
ivals.Rs[i] = 1e3 * src[rPtr+i];
ivals.cps[i+3] = src[rPtr+i+3];

end
rPtr = rPtr + 6;
ivals.tflash = 1e-3 * src[rPtr];



We make sure to generate fresh variable names for the
read pointer rPtr, the file handle f1 and the file contents
c1 and src. The rest of the names are guaranteed to be
non-clashing, since we have validated the description. We
then sequentially read the data, advancing the read pointer
as we go along. We use the unit information to scale data
into the units used internally in the program. Note also
that we have taken the opportunity to merge the loops for
ivals.kappas and ivals.Rs into a single loop. These
are exactly the kind of code transformations that are easy to
get wrong if done manually — in contrast, we can reason
generically that this transformation will always be correct.
As a result, the generated code looks like similar to code that
one would write by hand, but without the risk of making for
example an off-by-one error somewhere.

5. CONCLUSIONS AND FUTURE WORK
Type systems could be a powerful tool in the digitalisation

of metrology. By exploiting advances in dependent type
systems, we have shown that we can strengthen our ability
to reason about dimensional correctness, and also bridge
the gap between human-readable semantic specifications
of data, and the actual code representing it in a specific
programming environment. Crucially, we were able to reap
these benefits with minimal additional costs — we put to
good use already existing typecheckers without having to
rewrite the infrastructure in place from scratch.

We have chosen a straightforward treatment of dimen-
sions as elements of a free group, and units as constants; this
choice does not accurately disambiguate for example radi-
ans rad = mm−1 and square radians sr = m2m−2, even
though they are of very different nature. However we stress
that this is not an inherent limitation in the methodology of
using types for dimensions — dimensionless quantity ratios
can if necessary be tracked separately in types, using the
same principles as presented here, which we hope to do in
the future. Overall, the work reported here is part of a larger
project to incorporate dependent types in Matlab programs
for correctness checking, including dimensional correctness.

ACKNOWLEDGEMENTS
Thanks to Alistair Forbes, Keith Lines and Ian Smith for

discussions about this work. Funding: supported by the
UK National Physical Laboratory Measurement Fellowship
project “Dependent types for trustworthy tools”.

REFERENCES
[BBM18] Oscar Bennich-Björkman and Steve McKeever. The

next 700 unit of measurement checkers. In SLE ’18,
pages 121–132. ACM, 2018.

[BD09] Ana Bove and Peter Dybjer. Dependent Types at Work,
pages 57–99. Springer, 2009.

[DKS21] Jean-Marie Dautelle, Werner Keil, and Otavio Santana.
JSR 385: Units of measurement. https://unit
sofmeasurement.github.io/, 2021.

[Fos13] Marcus P. Foster. Quantities, units and computing.
Computer Standards & Interfaces, 35(5):529–535,
2013.

[Gun11] Adam Gundry. Type inference for units of measure.
In Pre-proceedings of the 12th International Sympo-
sium on Trends in Functional Programming (TFP’11),
pages 17–35, 2011.

[Gun15] Adam Gundry. A typechecker plugin for units of
measure: Domain-specific constraint solving in GHC
Haskell. In Haskell ’15, pages 11–22. ACM, 2015.

[Hal20] B. D. Hall. Software for calculation with physical
quantities. In 2020 IEEE International Workshop on
Metrology for Industry 4.0 IoT, pages 458–463, 2020.

[Hal22] B. D. Hall. Software representation of measured physi-
cal quantities, pages 273–284. World Scientific, 2022.

[Ken95] Andrew Kennedy. Programming languages and dimen-
sions. PhD thesis, University of Cambridge, United
Kingdom, 1995.

[Ken10] Andrew Kennedy. Types for Units-of-Measure: Theory
and Practice, pages 268–305. Springer, 2010.

[Mat22] Mathworks. MATLAB units of measurement. https:
//mathworks.com/help/symbolic/units-

of-measurement.html, 2022.
[ME14] Takayuki Muranushi and Richard Eisenberg. Expe-

rience report: Type-checking polymorphic units for
astrophysics research in Haskell. In Haskell ’14, pages
31–38. ACM, 2014.

[MNF22] Conor McBride and Fredrik Nordvall Forsberg. Type
systems for programs respecting dimensions. In
Franco Pavese, Forbes Alistair, Nien-Fan Zhang, and
Anna Chunovkina, editors, Advanced Mathematical
and Computational Tools in Metrology and Testing XII,
volume 90 of Advances in Mathematics for Applied
Sciences, pages 331–345. World Scientific, 2022.

[pin22] Pint: makes units easy. https://pint.readthe
docs.io/, 2022.

[Sim94] Charles C. Sims. Computation with Finitely Presented
Groups, volume 48 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press,
1994.

[SW10] Matthias C. Schabel and Steven Watanabe. Boost C++
libraries, chapter 42 (Boost.Units 1.1.0). https:

//www.boost.org/doc/libs/1_79_0/doc

/html/boost_units.html, 2010.
[WO91] Mitchell Wand and Patrick O’Keefe. Automatic di-

mensional inference. In Jean-Louis Lassez and Gor-
don Plotkin, editors, Computational Logic: Essays in
Honor of Alan Robinson, pages 479–486. MIT Press,
1991.


